Size and persistence matter

Wage and employment insurance at the micro level

Martin Kerndler

TU Wien Institut für Stochastik und Wirtschaftsmathematik Forschungsgruppe Ökonomie

> NOeG Annual Meeting 2019 April 25, 2019

- firms offer substantial insurance against wage fluctuations to job stayers
- especially with respect to idiosyncratic firm-level shocks (Bronars and Famullari, 2001; Guiso et al., 2005; Card et al., 2018)
- degree of wage insurance depends on
 - persistence of the shock: transitory vs. permanent
 - size/direction of the shock: positive vs. negative
- this paper:
 - analyze interaction between persistence and size of idiosyncratic shocks in shaping wage insurance at the firm level
 - 2 extend the analysis to layoffs

Relation to the literature

1 wage insurance and shock persistence

- Guiso, Pistaferri, Schivardi (2005); Cardoso, Portela (2009); Gürtzgen (2014), Kátay (2016)
- almost full insurance against transitory shocks, but not against permanent shocks (elasticity 0.05–0.10)
- time-series methods + IV regressions
- cannot estimate nonlinear effects of productivity on wages

Relation to the literature

1 wage insurance and shock persistence

- Guiso, Pistaferri, Schivardi (2005); Cardoso, Portela (2009); Gürtzgen (2014), Kátay (2016)
- almost full insurance against transitory shocks, but not against permanent shocks (elasticity 0.05–0.10)
- time-series methods + IV regressions
- cannot estimate nonlinear effects of productivity on wages

2 downwards wage rigidity at the individual level

- Dickens et al. (2007); Du Caju, Fuss, Wintr (2007); Babecký et al. (2010); Messina et al. (2010); Du Caju et al. (2015)
- downwards wage rigidity is typical feature of labor markets
- histogram-based approach using individual wage changes
- cannot link wage changes to firm-specific shocks

- German linked employer-employee data (LIAB), version 1993-2010
 - employer data: representative annual establishment survey
 - employee data: social insurance records
- sample restrictions
 - exclude Great Recession (2009 and 2010)
 - privately-owned firms in the private, non-financial sector with at least 5 employees
 - male full-time employees aged 25 to 59
 - exclude workers with top-coded wages (16%) from wage regressions
 - wage reg.: 2531 establishments, 216709 individuals

- In productivity regression at the firm level isolates idiosyncratic productivity shocks $\Delta \varepsilon_{jt}$
- 115 identify stochastic process generating the shocks (Guiso et al., 2005)

$$\varepsilon_{jt} = \zeta_{jt} + v_{jt}, \quad \zeta_{jt} = \zeta_{jt-1} + u_{jt}, \quad u_{jt}, v_{jt} \sim WN$$

- 2 use Kalman smoother to decompose residuals ε_{jt} into permanent component ζ_{jt} and transitory component v_{jt}
- 3 add these predictions as additional explanatory variables in wage/layoff regressions at the worker level

Productivity regression

• productivity of establishment j in year t is

$$\ln\left(\frac{Y_{jt}}{L_{jt}}\right) = \rho \ln\left(\frac{Y_{jt-1}}{L_{jt-1}}\right) + \alpha \ln\left(\frac{K_{jt}}{L_{jt}}\right) + Z'_{jt}\gamma + \varphi_j + \varepsilon_{jt}$$

- Y_{jt} annual sales in year t
- L_{jt} total employment at June 30 of year t
- K_{jt} capital stock constructed from investment data
- $\blacksquare\ Z_{jt}$ year dummies, linear time trends interacted with industry and region dummies
- φ_j unobserved establishment-specific fixed effect
- estimated in first differences using GMM (regression table)
 - Diff-in-Hansen: capital-labor ratio can be treated as exogenous
 - constant returns to scale cannot be rejected adding log-employment

- autocorrelation matrix of the GMM residuals $\Rightarrow \Delta \varepsilon_{jt} \sim MA(1)$ table
- consistent with the error process

$$\varepsilon_{jt} = \zeta_{jt} + v_{jt}, \quad \zeta_{jt} = \zeta_{jt-1} + u_{jt}, \quad u_{jt}, v_{jt} \sim W.N.$$

- can be transformed into a stationary state-space model for $\Delta \varepsilon_{jt}$
- idea: decompose total productivity shock

$$\underbrace{\Delta \varepsilon_{jt}}_{total} = \Delta \zeta_{jt} + \Delta v_{jt} = \underbrace{u_{jt}}_{perm.} + \underbrace{\Delta v_{jt}}_{trans.}$$

by Kalman smoothing at the establishment level

Decomposing transitory and permanent shocks

- if firm-specific variances $\mathbb{E}u_{jt}^2$ and $\mathbb{E}v_{jt}^2$ are known, Kalman smoothing yields the best linear prediction of $\{u_{jt}, \Delta v_{jt}\}_{t=1}^{T_j}$ given $\{\Delta \varepsilon_{jt}\}_{t=1}^{T_j}$
- assume heteroscadasticity of the form

$$\mathbb{E}u_{jt}^2 = \sigma_{uj}^2 = \exp(D_j'\lambda_u), \quad \mathbb{E}v_{jt}^2 = \sigma_{vj}^2 = \exp(D_j'\lambda_v)$$

baseline:

- D_j contains dummies for firm size (4 categories)
- λ_u and λ_v are estimated by Gaussian ML

variance estimates: estimated variances

Wage regressions

model individual wage changes as

$$\Delta \ln w_{ijt} = \Delta X'_{ijt} \delta + f(u_{jt}) + g(\Delta v_{jt}) + \eta_{ijt}$$

• w_{ijt} annual avg. wage that establishment j pays worker i in year t

- X_{ijt} includes Z_{jt}, cubic polynomials in age and tenure, dummies for industrial relations, education, white collar employment
- *u_{jt}* permanent productivity shock (unobserved)
- Δv_{jt} transitory productivity shock (unobserved)
- practical estimation:
 - replace u_{jt} and Δv_{jt} with predicted values and estimate by OLS
 - \blacksquare functional forms f and g can be specified or estimated themselves
 - standard errors are clustered at the establishment level and bootstrapped to take the uncertainty of all estimation stages into account

Wage elasticities

\blacksquare results for piecewise linear f and g:

more results for linear specification

		permanent shock		transitory shock	
	shock size	coefficient	std. err.	coefficient	std. err.
1	all	0.0625***	0.0143	0.0189^{*}	0.0102
2	negative	-0.0056	0.0269	0.0462^{***}	0.0172
	positive	0.1121^{***}	0.0268	-0.0067	0.0096
3	2 nd –5 th decile	0.1082^{**}	0.0524	0.0821^{**}	0.0325
	6 th –9 th decile	0.1149^{**}	0.0498	0.0043	0.0220

bootstrapped standard errors clustered at the establishment level, coefficient significance levels: * p<0.10, ** p<0.05, *** p<0.01

- nonparametric estimation of f and g: local linear regression
- main observations:
 - permanent: only very bad shocks lead to downwards wage rigidity
 - transitory: negative shocks lower wages, positive shocks captured by firm

Layoff regressions

- definition of a layoff follows Boockmann, Steffes (2010)
 - reported separation with non-employment spell of 60+ days if next employment spell is not with the same employer
 - \blacksquare mean annual layoff probability is 6.87%
- estimate linear probability model in first differences

$$\Delta lay_{ijt} = \Delta X'_{ijt}\delta + f(u_{jt}) + g(\Delta v_{jt}) + \eta_{ijt}$$

- $lay_{ijt} = 1$ if worker i is laid off by establishment j in year t
- X_{ijt} identical to wage regression

Semi-elasticity of the layoff probability

■ results for piecewise linear *f* and *g*:

		permanent shock		transitory shock		
	shock size	coefficient std. err.		coefficient	std. err.	
1	all	-0.0276	0.0213	0.0021	0.0095	
2	negative	-0.0986^{**}	0.0462	0.0048	0.0237	
2	positive	0.0257	0.0291	-0.0001	0.0175	

bootstrapped standard errors clustered at the establishment level, coefficient significance levels: * p<0.10, ** p<0.05, *** p<0.01

- nonparametric estimation of f and g: local linear regression
- main observations:
 - transitory shocks do not have any effect
 - negative permanent shocks increase individual layoff probability
 - suggests that Kalman smoother does reasonably good job

Heterogeneity: blue-collar vs. white-collar workers

- downward wage flexibility is limited to blue-collar workers; white-collar wages are downward rigid regression table
- layoff response limited to blue-collar workers (regression table)
- \Rightarrow white-collar workers seem perfectly insured against negative shocks
 - possible explanations:
 - agency considerations (monitoring costs, risk of shirking)
 - turnover considerations (replacement/recruitment/training costs)
 - degree of complementarity in the production process

Conclusion

- how do idiosyncratic shocks to firm productivity affect individual wages and employment?
- focus on interaction between shock persistence and shock size
- on average little evidence for downwards wage rigidity
 - permanent shocks have largely symmetric effect on wages
 - transitory shocks lead to upwards wage rigidity
- layoff probability responds only to negative permanent shocks
- substantial heterogeneity at the worker level
 - wage cuts and employment loss concentrated on blue-collar workers
 - white-collar workers enjoy full insurance against negative shocks
 - hints at considerations about agency, turnover, or complementarity

Sample statistics

	productivity reg.		wage rea	gressions	layoff regressions	
	(establish	ment IvI)	(worke	r level)	(worke	r level)
	mean	s.d.	mean	s.d.	mean	s.d.
sales per worker*	1.811	6.892	2.670	4.165	2.733	5.099
employment	181.3	772.1	2758.7	5477.5	3288.1	5477.5
capital-labor ratio*	0.947	5.913	1.409	2.172	1.426	2.182
1–9 employees	0.216		0.006		0.005	
10–99 employees	0.406		0.052		0.050	
100–199 employees	0.222		0.132		0.127	
200+ employees	0.156		0.810		0.818	
manufacturing	0.477		0.840		0.831	
construction	0.143		0.049		0.047	
sales	0.160		0.041		0.039	
services	0.220		0.070		0.083	
wage			107.23	27.28	116.29	39.09
tenure			12.234	7.393	11.578	7.823
age			41.459	8.702	41.817	8.762
white-collar			0.180		0.311	
establishments	establishments 2697		2531		2620	
individuals			216	709	300	667

 * measured in 100000 \in

Productivity regression

	coefficient	std. err.
$\ln\left(\frac{Y_{jt-1}}{L_{jt-1}}\right)$	0.2101^{***}	0.0376
$-\ln\left(\frac{K_{jt}}{L_{jt}}\right)$	0.3173^{***}	0.0285
	χ^2 -statistic	p-value
year dummies	95.72^{***}	0.000
industry dummies	39.83^{***}	0.000
regional dummies	10.54	0.837
	statistic	p-value
AR(2) test	1.32	0.186
AR(3) test	-0.83	0.407
AR(4) test	1.11	0.267
Hansen J test	39.23	0.415
establishments (observations)	2697 (17	7407)

two-step difference GMM, corrected standard errors clustered at the establishment level, significance levels: * p<0.10, ** p<0.05, *** p<0.01

Residual autocorrelation

autocorrelation matrix of the GMM residuals:

order (k)	$\mathbb{E}[\Delta \hat{\varepsilon}_{jt} \Delta \hat{\varepsilon}_{jt-k}]$	std. err.
0	0.0795^{***}	0.0038
1	-0.0344^{***}	0.0024
2	0.0018	0.0012
3	-0.0009	0.0011

standard errors bootstrapped with clustering at the establishment level, significance levels: * p < 0.10, ** p < 0.05, **** p < 0.01

• implies $\Delta \varepsilon_{jt} \sim MA(1) \Rightarrow$ error process in levels:

$$\varepsilon_{jt} = \zeta_{jt} + v_{jt}, \quad \zeta_{jt} = \zeta_{jt-1} + u_{jt}, \quad u_{jt}, v_{jt}$$
W.N.

• estimates $\hat{\sigma}_v^2 = 0.0344$ and $\hat{\sigma}_u^2 = 0.0088$ significant at 1% level

	(a) static FE model		(b) dynamic	FE model
	coefficient std. err.		coefficient	std. err.
$\ln\left(\frac{Y_{jt-1}}{L_{jt-1}}\right)$			0.2503***	0.0378
$\ln\left(\frac{K_{jt}}{L_{jt}}\right)$	0.3205^{***}	0.0289	0.3021***	0.0233
$\ln L_{jt}$	0.0234	0.0380	-0.0206	0.0318
	statistic	p-value	statistic	p-value
AR(2) test	-2.77	0.006	1.81	0.070
AR(3) test	-1.55	0.120	-0.69	0.493
AR(4) test	0.72	0.471	1.10	0.270
Hansen J test	44.70	0.211	80.66	0.252

two-step diff. GMM accounting for endogeneity of $\Delta \ln L_{jt}$, corrected standard errors clustered at the establishment level, significance levels: * p<0.10, ** p<0.05, *** p<0.01

Weak instruments

first stage R^2 as a function of $\phi = \sigma_{\tilde{u}}^2 / \sigma_{\tilde{v}}^2$

Estimated standard deviations $\hat{\sigma}_{\tilde{u}j}$ and $\hat{\sigma}_{\tilde{v}j}$

 $\blacksquare\, {\rm permanent}$ shock $\square\, {\rm transitory}$ shock

 $\blacksquare\, {\rm permanent}$ shock $\Box\, {\rm transitory}$ shock

error bars indicate bootstrapped standard errors clustered at the establishment level

	ML variance	e estimate	MM varianc	MM variance estimate		
	coef.	std. err.	coef.	std. err.		
α	0.0625^{***}	0.0143	0.0617^{***}	0.0145		
β	0.0189^{*}	0.0102	0.0192^{*}	0.0105		

bootstrapped standard errors clustered at the establishment level, coefficient significance levels: * p<0.10, ** p<0.05, *** p<0.01

different ML variance estimates

	homosced	lastic	heteroscedastic: establish. size + industry		
	coefficient	std. err.	coefficient	std. err.	
α	0.0701^{***}	0.0162	0.0626***	0.0170	
β	0.0201^{**}	0.0091	0.0192^{*}	0.0101	

bootstrapped standard errors clustered at the establishment level, coefficient significance levels: * p<0.10, ** p<0.05, *** p<0.01

	permanent shock, ΔP_{jt} coefficient std. err.		transitory shock, ΔT_{jt}		
			coefficient	std. err.	
manufacturing	0.0615^{***}	0.0162	0.0204^{*}	0.0121	
construction	0.0950^{***}	0.0313	0.0113	0.0136	
sales	0.0599^{**}	0.0236	0.0015	0.0116	
services	0.0228	0.0344	0.0259	0.0246	
total	0.0625^{***}	0.0143	0.0189^{*}	0.0102	

bootstrapped standard errors clustered at the establishment level, coefficient significance levels: * p<0.10, ** p<0.05, *** p<0.01

	permanent sho	ock, ΔP_{jt}	transitory shock, ΔT_{jt}		
size category	coefficient	std. err.	coefficient	std. err.	
1–9 employees	0.0545	0.0404	0.0069	0.0091	
10–99 employees	0.0681^{***}	0.0166	0.0148^{***}	0.0051	
100–199 employees	0.0593^{***}	0.0141	0.0110^{***}	0.0078	
200+ employees	0.0588^{***}	0.0166	0.0231	0.0130	
total	0.0625^{***}	0.0143	0.0189^{*}	0.0102	

bootstrapped standard errors clustered at the establishment level, coefficient significance levels: * p<0.10, *** p<0.05, **** p<0.01

	permanent shock, ΔP_{jt}		transitory shock, ΔT_{jt}	
	coefficient	coefficient std. err.		std. err.
ΔX_{jt}	0.0708^{*}	0.0396	0.0179**	0.0091
$\Delta X_{jt} \times CBA$ industry	-0.0142	0.0371	0.0035	0.0184
$\Delta X_{jt} \times CBA$ firm	-0.0936	0.0821	0.0073	0.0243
$\Delta X_{jt} \times WC$	0.0104	0.0371	-0.0004	0.0200

establishments in the manufacturing sector only; bootstrapped standard clustered at the establishment level, significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01

▲ back

Nonparametric wage response to a permanent shock

left axis: local linear kernel regression, 95% confidence band based on bootstrapped standard errors clustered at the establishment level; right axis: empirical cdf (shaded)

▲ back

Nonparametric wage response to a transitory shock

left axis: local linear kernel regression, 95% confidence band based on bootstrapped standard errors clustered at the establishment level; right axis: empirical cdf (shaded)

Nonparametric layoff response to a permanent shock

left axis: local linear kernel regression, 95% confidence band based on bootstrapped standard errors clustered at the establishment level; right axis: empirical cdf (shaded)

▲ back

Nonparametric layoff response to a transitory shock

left axis: local linear kernel regression, 95% confidence band based on bootstrapped standard errors clustered at the establishment level; right axis: empirical cdf (shaded)

		permanent	shock	transitory	shock
	interaction $ imes$ shock size	coefficient	std. err.	coefficient	std. err.
1	blue-collar $ imes$ all	0.0613^{***}	0.0173	0.0244^{*}	0.0134
1	white-collar $ imes$ all	0.0651^{***}	0.0186	-0.0015	0.0088
	blue-collar $ imes$ negative	-0.0228	0.0339	0.0634^{***}	0.0239
2	blue-collar $ imes$ positive	0.1198^{***}	0.0334	-0.0129	0.0117
2	white-collar $ imes$ negative	-0.0007	0.0262	0.0117	0.0133
	white-collar $ imes$ positive	0.1224^{***}	0.0259	-0.0139	0.0123
	blue-collar $ imes$ 2 nd –5 th decile	0.0920	0.0611	0.1117^{***}	0.0429
3	blue-collar $ imes$ 6 th –9 th decile	0.1088^{**}	0.0555	-0.0059	0.0285
	white-collar $ imes$ 2 nd –5 th decile	0.0453	0.0555	0.0136	0.0196
	white-collar $ imes$ 6 th –9 th decile	0.1819^{***}	0.0526	0.0054	0.0234

employees in the manufacturing sector only; bootstrapped standard errors clustered at the establishment level, coefficient significance levels: * p < 0.10, ** p < 0.05, *** p < 0.01

		permanent shock		transitory shock	
	interaction $ imes$ shock size	coefficient	std. err.	coefficient	std. err.
1	blue-collar $ imes$ all	-0.0266	0.0229	-0.0029	0.0118
	white-collar $ imes$ all	0.0210	0.0229	-0.0003	0.0115
2	blue-collar $ imes$ negative	-0.1015^{*}	0.0528	0.0135	0.0278
	blue-collar $ imes$ positive	0.0246	0.0321	-0.0184	0.0204
	white-collar $ imes$ negative	-0.0087	0.0549	0.0205	0.0299
	white-collar $ imes$ positive	0.0452	0.0377	-0.0237	0.0208

employees in the manufacturing sector only; bootstrapped standard errors clustered at the establishment level, coefficient significance levels: * p<0.10, ** p<0.05, *** p<0.01

▲ back