Analysis 2 UE

VII) 149, 150, 154, 158, 161, 166

149) Zeigen Sie, dass die Integralnorm $\int_a^b |f|$ und die Supremumsnorm $\sup_{[a,b]} |f|$ auf dem Vektorraum C[a,b] nicht äquivalent sind.

Beweis: Es genügt die Angabe eines Gegenbeispiels. Wir betrachten also in der Folge C[0,1] und nehmen an, die beiden Normen wären äquivalent, d.h. es existieren $a < b \in \mathbb{R}^+$ derart, dass

$$a \cdot \sup_{[0,1]} |f| \le \int_0^1 |f| \le b \cdot \sup_{[0,1]} |f| \quad \forall f \in C[0,1].$$

Wir wählen die Funktionenfolge $f_n(x) = x^n \in C[0,1] \ \forall n \in \mathbb{N}$ und berechnen

$$\sup_{[0,1]} |x^n| = \sup_{[0,1]} x^n = 1 \quad \forall \, n \in \mathbb{N}$$

sowie

$$\int_0^1 |x^n| \, dx = \frac{x^{n+1}}{n+1} \Big|_0^1 = \frac{1}{n+1} \quad \forall \, n \in \mathbb{N}$$

Bildet man hier nun den Grenzübergang, ergibt sich $\lim_{n\to\infty}\int_0^1|x^n|=0$, während das Supremum unverändert bleibt.

Es kann also kein solches a>0 unabhängig von x existieren, die Normen sind demnach auf C[a,b] nicht äquivalent.

150) Zeigen Sie, dass der Vektorraum A_0 aus Bsp. 140 mit der Supremumsnorm $||\{x_n\}||$ vollständig ist.

Beweis: A_0 ist vollständig, wenn dort jede Cauchy-Folge konvergiert. Sei $\{x_n\}_{n\in\mathbb{N}}$ eine CF, d.h. $\forall \varepsilon > 0 \ \exists N(\varepsilon) \in \mathbb{N}$ mit $||x_k - x_n|| < \varepsilon \ \forall k, n \ge N(\varepsilon)$. Es gilt

$$||\boldsymbol{x}_k - \boldsymbol{x}_n|| = \sup_{j \in \mathbb{N}} |x_{kj} - x_{nj}| < \varepsilon \iff |x_{kj} - x_{nj}| < \varepsilon \quad \forall j \in \mathbb{N} \quad \forall k, n \ge N(\varepsilon)$$

Alle Komponentenfolgen $\{x_{nj}\}_{n\in\mathbb{N}}$ erfüllen also die Cauchy-Bedingung in $(\mathbb{R},|\cdot|)$. Aufgrund der Vollständigkeit von \mathbb{R} konvergieren sie gegen ein $x_j \in \mathbb{R}$. Also

$$\Rightarrow |x_{kj} - x_j| < \varepsilon \quad \forall j \in \mathbb{N} \iff \sup_{i \in \mathbb{N}} |x_{kj} - x_j| < \varepsilon \quad \forall k \ge K(\varepsilon)$$

Sei nun $\boldsymbol{x} := \{x_j\}_{j \in \mathbb{N}}$, dann ist der letzte Ausdruck äquivalent zu $||\boldsymbol{x}_k - \boldsymbol{x}|| < \varepsilon \ \forall \ k \geq K(\varepsilon)$, die Folge ist also konvergent.

154) Zeigen Sie durch Angabe eines Gegenbeispiels, dass der Vektorraum C[a, b] der auf [a, b] stetigen Funktionen bezüglich der Integralnorm $\int_a^b |f|$ nicht vollständig ist.

Beh.: $f_n = x^n$ bildet auf C[0,1] eine Cauchy-Folge, die nicht konvergiert.

Beweis: Wir nehmen o.B.d.A $k \ge n$ an und prüfen zunächst die Cauchy-Eigenschaft:

$$||f_n - f_k|| = \int_0^1 |x^n - x^k| \, dx = \int_0^1 x^n \, dx - \int_0^1 x^k \, dx = \frac{1}{n+1} - \frac{1}{k+1} \quad \forall k \ge n \ge N(\varepsilon)$$

Durch die Abschätzung $\frac{1}{n+1} - \frac{1}{k+1} \le \frac{1}{n+1} < \varepsilon$ kommt man auf $N(\varepsilon) \ge \varepsilon^{-1}$.

Nun bilden wir die Grenzfunktion

$$f := \lim_{n \to \infty} x^n = \begin{cases} 1 & \text{für } x = 1 \\ 0 & \text{sonst} \end{cases}$$

f ist an 1 unstetig, also $f \notin C[0,1] \Rightarrow f_n$ konvergiert nicht in C[0,1].

158) Untersuchen Sie im Raum C[0,1] der stetigen Funktionen von [0,1] in \mathbb{R} mit der Integralnorm $\int_0^1 |f|$, ob die folgenden "Punkte" $0, 1, \sin 2\pi t$ Häufungspunkte der Teilmenge aller positiven stetigen Funktionen mit f(0) = f(1) = 0 sind.

Vorab: $h \in C[0,1]$ ist Häufungspunkt $\Leftrightarrow \exists \{f_n\}$ in $C[0,1] \setminus \{h\}$ mit $\lim_{n\to\infty} f_n = h$. Da $||f_n - h|| \to 0 \Leftrightarrow f_n \to h$ müssen wir lediglich passende Funktionenfolgen finden, die obige Kriterien erfüllen und für $n \to \infty$ gegen h konvergieren.

Beh. 1: Jede Funktion f(x) = h mit $h \in \mathbb{R}^+$ ist Häufungspunkt.

Beweis: Wir definieren z.B.

$$f_n(x) = h(1 - (2x - 1)^{2n} \quad \text{oder} \quad f_n(x) = \begin{cases} 0 & x \in \{0, 1\} \\ \text{linear} & x \in (0, \frac{1}{n+1}) \cup (1 - \frac{1}{n+1}, 1) \\ h & x \in \left[\frac{1}{n+1}, 1 - \frac{1}{n+1}\right] \end{cases}$$

Offensichtlich gilt in beiden Fällen $\lim_{n\to\infty} = h$.

Beh. 2: Die Funktion f(x) = 0 ist Häufungspunkt.

Beweis: Wir definieren z.B.

$$f_n(x) = \frac{\sin(\pi x)}{n}$$
 oder $f_n(x) = \begin{cases} 0 & x \in \{0, 1\} \\ \text{linear} & x \in (0, \frac{1}{2}) \cup (\frac{1}{2}, 1) \\ \frac{1}{n} & x = \frac{1}{2} \end{cases}$

In beiden Fällen folgt $\lim_{n\to\infty} = 0$.

Beh. 3: Keine Funktion f(x) = h mit $h \in \mathbb{R}^-$ kann Häufungspunkt sein.

Beweis: Wählt man eine Kugel vom Radius $r \leq |h|$, so liegt keine Funktion der zu untersuchenden Menge darin. $\Rightarrow h$ ist äußerer Punkt.

161) Zeigen Sie, dass die Einschränkung von f auf jede Gerade durch den Koordinatenursprung an dieser Stelle stetig ist, f selbst jedoch dort unstetig.

$$f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^6} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Beh. 1: Jede Annäherung an (0,0) über eine beliebige Gerade liefert als Grenzwert 0.

Beweis: Jede Gerade durch den Koordinatenursprung lässt sich in der Form $y = k \cdot x$ anschreiben. Sei $k \in \mathbb{R}$ fix, dann sind alle Punkte der Gerade bestimmt durch $\{(x,y) \mid y = k \cdot x\}$. Es folgt:

$$\lim_{x \to 0} f(x, kx) = \lim_{x \to 0} \frac{k^3 x^4}{x^2 + k^6 x^6} = \lim_{x \to 0} \frac{k^3 x^2}{1 + k^6 x^4} = 0$$

Beh. 2: Die Funktion ist an (0,0) unstetig.

Beweis: Die Annäherung $x = y^3$ liefert

$$\lim_{y \to 0} f(y^3, y) = \lim_{y \to 0} \frac{y^6}{y^6 + y^6} = \frac{1}{2} \neq 0$$

 $\Rightarrow f$ ist an (0,0) unstetig.

166) Untersuchen Sie f auf Stetigkeit an (0,0).

$$f(x,y) = \begin{cases} \frac{xy}{|x|+|y|} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Beh.: f ist an (0,0) stetig.

Beweis: Elementares Abschätzen liefert:

$$\begin{split} \frac{xy}{|x|+|y|} &\leq \frac{\max^2(|x|,|y|)}{\max(|x|,|y|)} = \max(|x|,|y|) = ||(x,y)||_{\max} \to 0 \text{ für } (x,y) \to (0,0). \\ \Rightarrow &\lim_{(x,y) \to (0,0)} \frac{xy}{|x|+|y|} = 0. \end{split}$$