Analysis 2 UE

VIII) 155, 169, 174, 178

155) T_i $(i \in I)$ seien Teilmengen eines metrischen Raumes (M, d). Untersuchen Sie die Enthaltenseins-Beziehung zwischen $H(\bigcup_{i \in I})$ und $\bigcup_{i \in I} H(T_i)$. Unterscheiden Sie, wenn nötig zwischen endlicher und unendlicher Indexmenge I.

Beh.: Es gilt

$$\label{eq:hamiltonian} \begin{split} &\bigcup_{i\in I} H(T_i) = H\Big(\bigcup_{i\in I} T_i\Big) \text{ für } I \text{ endlich,} \\ &\bigcup_{i\in I} H(T_i) \subseteq H\Big(\bigcup_{i\in I} T_i\Big) \text{ für } I \text{ unendlich.} \end{split}$$

Beweis: Sei $h \in \bigcup_{i \in I} H(T_i)$. $\Rightarrow \exists j \in I$ mit $h \in H(T_j) \Rightarrow \exists t(\varepsilon) \neq h \in T_j$ mit $t(\varepsilon) \in K_{\varepsilon}(h) \ \forall \varepsilon > 0$. (vgl 2.(c) auf S. 84)

$$t(\varepsilon) \in T_j \Rightarrow t(\varepsilon) \in \bigcup_{i \in I} T_j \Rightarrow h \in H(\bigcup_{i \in I} T_i).$$

Umkehrung:

Sei $h \in H(\bigcup_{i \in I} T_i)$, d.h. $\exists t(\varepsilon) \neq h \in \bigcup T_i$ mit $t(\varepsilon) \in K_{\varepsilon}(h) \ \forall \varepsilon > 0$.

Fragestellung: Existiert ein festes T_i mit $t(\varepsilon) \in T_i \ \forall \varepsilon > 0$?

Ann.: $\exists \, \varepsilon_0 > 0 \text{ derart, dass } t(\varepsilon) \notin T_j \, \forall \, \varepsilon_0 > \varepsilon > 0, j \in I \text{ fest.}$

$$\Rightarrow \begin{cases} 1. \text{ Fall: } t(\varepsilon) \in T_k \text{ für ein } k \neq j, \\ 2. \text{ Fall: } t(\varepsilon) \notin T_i \ \forall i \in I \Rightarrow t(\varepsilon) \notin \bigcup T_i \Rightarrow h \notin H(\bigcup T_i), \text{ ein Widerspruch.} \end{cases}$$

Sei nun $\#I < \infty$. \Rightarrow So ein festes T_j existiert. $\Rightarrow h \in H(T_j) \Rightarrow h \in \bigcup_{i \in I} H(T_i)$.

Im unendlichen Fall ist die Existenz eines solchen T_j nicht gesichert, wir wählen als Gegenbeispiel: $T_i = \left\{\frac{1}{i}\right\} \Rightarrow H(T_i) = \emptyset$, aber $\bigcup_{i \in \mathbb{N}} T_i = \left\{\frac{1}{i} \mid i \in \mathbb{N}\right\} \Rightarrow H(\bigcup T_i) = 0$.

Es folgt die Gültigkeit der Behautung.

169) Bestimmen Sie D(f) und setzen Sie $f(x,y) = \frac{x^2 - xy - 2y^2}{x^3 + y^3}$ auf einen möglichst großen Bereich von \mathbb{R}^2 stetig fort.

Beh. 1:
$$D(f) = \mathbb{R}^2 \setminus \{(x,y) \in \mathbb{R}^2 \mid y = -x\}.$$

Beweis: Genau für alle (x,y) mit $x^3+y^3=0$ ist f nicht definiert. Elementare Umformung ergibt die Behauptung.

Beh. 2: f kann für alle Paare $(x, -x) \neq (0, 0)$ durch $f(x, -x) = \frac{1}{x}$ stetig fortgesetzt werden. An (0, 0) ist keine stetige Fortsetzung möglich.

Beweis: Sei $x \in \mathbb{R}$ fest.

$$\lim_{y \to -x} f(x,y) = \lim_{y \to -x} \frac{x^2 - xy - 2y^2}{x^3 + y^3} = \lim_{y \to -x} \frac{x - 2y}{x^2 - xy + y^2} = \frac{3x}{3x^2} = \frac{1}{x}.$$

Der Grenzwert $y \to -x$ existiert also für alle (x, -x) mit $x \neq 0$.

174) Vergleichen Sie die iterierten Grenzwerte für $x \to 0$ und $y \to 0$ und den Grenzwert für $(x,y) \to (0,0)$. Ist einer der einfachen Grenzübergänge $x \to 0$ bzw. $y \to 0$ gleichmäßig bezüglich der anderen Variablen?

$$f(x,y) = \begin{cases} \frac{x^2 \sin\frac{1}{x} + y^2 \sin\frac{1}{y} + x^4}{x^2 + y^2} & xy \neq 0\\ 0 & xy = 0 \end{cases}$$

Beh. 1: $\phi(x) := \lim_{y\to 0} f(x,y)$ und $\psi(y) := \lim_{x\to 0} f(x,y)$ existieren.

Beweis:

$$\phi(x) = \lim_{y \to 0} f(x, y) = \begin{cases} \sin \frac{1}{x} + x^2 & x \neq 0 \\ 0 & x = 0 \end{cases}$$

$$\psi(y) = \lim_{x \to 0} f(x, y) = \begin{cases} \sin \frac{1}{y} & y \neq 0 \\ 0 & y = 0 \end{cases}$$

Beh. 2: Die beiden iterierten Grenzwerte existieren nicht.

Beweis: "Einsichtig.";-)

Beh. 3: Der "zweidimensionale" Grenzwert existiert nicht.

Beweis: Man wählt die Annäherung y = x und beobachtet:

$$\lim_{x \to 0} f(x, x) = \lim_{x \to 0} \frac{2x^2 \sin \frac{1}{x} + x^4}{2x^2} = \lim_{x \to 0} \sin \frac{1}{x} + \frac{x^2}{2}.$$

Beh. 4: Der Grenzübergang $x \to 0$ ist für kein Intervall $I := [-\eta, \eta]$ mit $\eta > 0$ gleichmäßig bezüglich $y \in I$.

Beweis: f(x,y) konvergiert für $x \to 0$ gleichmäßig bezüglich y gegen $\psi(y) \Leftrightarrow \forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0$ mit $|f(x,y) - \psi(y)| < \varepsilon \ \forall x \in (-\delta,\delta)$ und $\forall y \in I$.

Wir wählen ein $k \in \mathbb{N}$ mit $x_k = \frac{2}{(4k+1)\pi} \in (\delta, \delta)$ und $y_k = \frac{2}{(4k+3)\pi} \in I$. Dann ist

$$|f(x_k, y_k) - \psi(y_k)| = \frac{|-\sin\frac{1}{x_k} + \sin\frac{1}{y_k} - x_k^2|}{1 + (\frac{y_k}{x_k})^2} = \frac{2 + (\frac{2}{(4k+1)\pi})^2}{1 + (\frac{4k+1}{4k+3})^2}$$

und der Ausdruck rechts für beliebige $n \ge k$ stets ≥ 1 .

Beh. 5: Der Grenzübergang $y \to 0$ ist für kein Intervall $I := [-\eta, \eta]$ mit $\eta > 0$ gleichmäßig bezüglich $x \in I$.

Beweis: Analoges Vorgehen wie oben führt auf den Widerspruch

$$\varepsilon > |f(x_k, y_k) - \phi(x_k)| = \frac{2 + \left(\frac{2}{(4k+1)\pi}\right)^2}{1 + \left(\frac{4k+3}{4k+1}\right)^2} \ge \frac{2}{3}$$

178) Vergleichen Sie die iterierten Grenzwerte für $x \to 0$ und $y \to 0$ und den Grenzwert für $(x,y) \to (0,0)$. Ist einer der einfachen Grenzübergänge $x \to 0$ bzw. $y \to 0$ gleichmäßig bezüglich der anderen Variablen?

$$f(x,y) = \begin{cases} \frac{x^2y^2}{x^4 + y^8} + (x^2 + y^2)\sin\frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

Beh. 1: $\phi(x) := \lim_{y \to 0} f(x, y)$ existiert, $\psi(y) := \lim_{x \to 0} f(x, y)$ existiert nur für y = 0.

Beweis:

$$\phi(x) = \lim_{y \to 0} f(x, y) = \begin{cases} x^2 \sin\frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$
$$\psi(y) = \lim_{x \to 0} f(x, y) = \begin{cases} \nexists & y \neq 0 \\ 0 & y = 0 \end{cases}$$

Beh. 2: $\lim_{x\to 0} \lim_{y\to 0} f(x,y) = 0$, $\lim_{y\to 0} \lim_{x\to 0} f(x,y)$ existient nicht.

Beweis: $\lim_{x\to 0} \lim_{y\to 0} f(x,y) = \lim_{x\to 0} \phi(x) = 0.$

Da $D(\psi) = \{0\}$ hat diese Menge keinen Häufungspunkt und $\lim_{y\to 0} \psi(y)$ kann nicht existieren.

Beh. 3: $\lim_{(x,y)\to(0,0)} f(x,y)$ existiert nicht.

Beweis: Angenommen der Grenzwert existiert, dann gilt $\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} g(x,y) + \lim_{(x,y)\to(0,0)} h(x,y)$.

$$h(x,y) := \begin{cases} (x^2 + y^2) \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

$$g(x,y) := \begin{cases} \frac{x^2y^2}{x^4 + y^8} & x \neq 0\\ 0 & x = 0 \end{cases}$$

Die Annäherung $x=y^2$ liefert $\lim_{y\to 0} f(y^2,y)=\lim_{y\to 0} \frac{y^6}{2y^8}=\lim_{y\to 0} \frac{1}{2y^2}=\infty.$

Da h(x,y) eine Nullfolge ist und g(x,y) divergiert, kann auch der Grenzwert für f(x,y) nicht existieren.

Beh. 4: Der Grenzübergang $x\to 0$ ist für kein Intervall $I:=[-\eta,\eta]$ mit $\eta>0$ gleichmäßig bezüglich $y\in I.$

Beweis: Angenommen doch, dann gibt es zu $\varepsilon = 1$ ein $\delta > 0$ sodass $\forall x \in (-\delta, \delta)$ und $\forall y \in I$ gilt: $|f(x, y) - \phi(x)| < 1$.

Nun wählen wir ein $k \in N$ mit $x_k = \frac{1}{k\pi} \in (-\delta, \delta)$ und $y_k = \frac{2}{k\pi} \in I$. Dann ist

$$|f(x_k, y_k) - \phi(x_k)| = \frac{x_k^2 y_k^2}{x_k^4 + y_k^8} = \frac{\frac{4}{(k\pi)^4}}{\frac{1}{(k\pi)^4} + \frac{2^8}{(k\pi)^8}} = \frac{4}{1 + \left(\frac{4}{k\pi}\right)^4},$$

und der Ausdruck rechts wegen $\frac{4}{k\pi} \leq 2$ sicher $\geq \frac{1}{5},$ ein Widerspruch.