Mars- u. Walkscheinlichkeidscheone UE

$$\overline{M}$$
 1 (Ω, σ), $1\Omega|^{2} \times_{0}$, $\tau := \{A \in \Omega \mid |A| \in \chi_{0} \vee |A^{c}| \in \chi_{0}\}$
 $\overline{ZZ}: f: (\Omega, \sigma) \to (R, \mathfrak{F}) \Leftrightarrow \exists A \in \Omega : |A| \in \chi_{0} \wedge f(\omega) - cont. \forall \omega \in A^{c}.$
 \mathfrak{K}^{*} Sie B $\in \mathfrak{K}$, so geld $c \notin B \Rightarrow f^{*}(B) \wedge A^{c} = \emptyset$.
Defin geld $f^{*}(B) \in A \Rightarrow |f^{*}(B)| \leq |f^{*}(A)| \leq \chi_{0} \Rightarrow f^{*}(B) \in \sigma$.
Eix $c \notin B$ geld $f^{*}(B) = f^{*}(B)(\mathfrak{s}(\mathfrak{s})) \cup f^{*}(c)$.
Wegen $A^{c} \in f^{*}(c)$ and $(f^{*}(c))^{c} \in A \Rightarrow |(f^{*}(c))^{c}| \leq \chi_{0} \Rightarrow f^{*}(c) = \sigma$
und sound $f^{*}(B) \in \sigma$.
 f of A nerelien, $d \in \forall C \in \mathbb{R}$ geld enductus:
1) $|f^{*}(c)|^{c} | \times \chi_{0}, d \in B$ $\exists kirkhen also wele Pirke met f(\omega) + c$.
demetting: $\exists avorellan/kirk Purkhe, de 1 explicition withouther (uconstraintion) Bunkhen (lextern. So and durken möglich, Hengen $M_{0}, M_{0} \in f(\Omega)$
 $dewark zu wicklen, den gelt $M_{2} \in c_{1}$ $i \in 1, 2\}$; $C_{n}, C_{2} \in \mathfrak{K}$ some
 $C_{1} \wedge C_{2} = \emptyset$
 δ gield $|C_{1}| \times \chi_{0} \Rightarrow |f^{*}(C_{1})| \geq |f^{*}(C_{2})| \geq \chi_{0}$.
De Rick welken $f^{*}(C)^{c}| = |f^{*}(C_{1})| \geq |f^{*}(C_{2})| \geq \chi_{0}$.
De Rick welken $f^{*}(C) \notin \emptyset$, some of M finder members! \mathfrak{I}
 $dewark welken $f^{*}(C) \notin \emptyset$, some of M finder members! \mathfrak{I}
 $dewark welken finder $\mathfrak{I} = \mathfrak{I}(C)$ of $\mathfrak{I} = \mathfrak{I}(\mathfrak{I})$.$$$$

$$\begin{array}{c} R^{k} \rightarrow R \\ 2) \ \overline{ZZ}^{:} \ f \ \text{Red} \ \text{Röchst. obs. viele Unstedigheitsstellen } \Rightarrow f \ \text{ist messloon.} \\ Seien \ \textbf{a}_{1}, \ \textbf{a}_{2}, \ldots \ \text{die Unstedigheitsstellen won } f. \\ Denn existient eine Zeileigung, von R^{k} \ \text{durch (höchstens obs. viele)} \\ zusommenhängende Mengen I_{j_{1}}, sodien IR^{k} = \bigcup_{j_{1}} I_{j_{1}} \ \text{und } f|_{I_{1}} \ \text{stedig ist } \forall j. \\ \Rightarrow f|_{I_{j}} \ \text{ist } L_{k} - \text{messloon } \forall j. \\ \\ \text{Wegen } f^{-1}((-\infty, c)) = \bigcup_{j_{1}} f|_{I_{j}}^{-1}((-\infty, c)) \in L_{k} \ \forall c \in \mathbb{R} \ \text{ist } f \ L_{k} \ L - \text{messloon.} \end{array}$$

Es guild
$$f^{-1}(B) = \underbrace{f_{N^{c}}^{-1}(B)}_{E \times B} \cup \underbrace{f_{N^{c}}^{-1}(B)}_{E \times B} \forall B \in \mathcal{L},$$

 $e \cdot \mathcal{L}_{F} = e \cdot \mathcal{L}_{F}$
 $f_{N^{c}}^{-1}(B) \subseteq N \Rightarrow \lambda_{R} \left(\underbrace{f_{N^{c}}^{-1}(B)}_{R} \right) = O \Rightarrow f^{-1}(B) \in \mathcal{L}_{R}$ es. Konstruktion room \mathcal{L}_{R} .

5)
$$(\Omega, \Omega), \quad \xi \colon \Omega \to \mathbb{R}$$

o) $\Omega \neq \mathcal{P}(\Omega) \Rightarrow \exists A \subseteq \Omega \mod A \notin \Omega$.
Set $f_A(\omega) = \begin{cases} 1 & \omega \in A \\ -1 & \omega \notin A \end{cases}$

Werkle
$$A \notin \mathcal{A} \Rightarrow f_A^{-1}(\{1\}) = A \notin \mathcal{A} \Rightarrow f_A \text{ is A nicht } \mathcal{A} \mid \mathcal{B}_1 \text{ -messlow.}$$

$$|f_{\alpha}|(\omega) = 1 \quad \forall \omega \in \Omega \Rightarrow |f_{\alpha}| \quad i \neq \alpha \quad d_{\alpha} = member.$$

$$g_{A} \circ f_{A}(\omega) = 0 \quad \forall \omega \in \Omega, A \in \Omega \implies g_{A} \circ f_{A} \text{ ist member}$$

soleer og micht Lo, Lo, -member, die

7) S:
$$\{1, \dots, 6\}^2 \longrightarrow \{2, \dots, 12\}$$

 $(x_1, x_2) \longmapsto x_1 + x_2$
 $\mathcal{T}_2 = \mathcal{P}(\{2, \dots, 12\})$
 $\mathcal{O}(S) = S^{-1}(\mathcal{T}_2)$
Breacher $C_s := \{(x_1, x_2) \in \{1, \dots, 6\}^2 \mid x_1 + x_2 = z\}$ $i \in \{2, \dots, 12\}$.
Weger $C_s \cap C_g^* \notin \forall i \neq g$ rind die C_s genau die Aquiruburburburn von $\mathcal{D}(S)$.
 $S^{-1}(\{i\}) = C_s \quad \forall i \in \{2, \dots, 12\}$
 $S^{-1}(\{i\}) = C_s \quad \forall i \in \{2, \dots, 12\}$
 $S^{-1}(A) = \bigcup C_s \qquad \Rightarrow \mathcal{D}(S) = \{D \mid D = \bigcup C_s\}.$
4) See Up die Hange alle Unstedigbutsstellen von f_1 so gift:
 $U_g = \bigcup_i \cup U_z = \{x \in \mathbb{R} \mid f(x) < f(x)\} \cup \{x \in \mathbb{R} \mid f(x) > f(x)\}.$
Wie behechten zunächs $U_i:$
See $g: \bigcup_i \rightarrow \mathbb{Q}^2$
 $x \mapsto (y,q)$ rodum gift: $f(x) < q' < f(x)$
 $q < 4 < x \Rightarrow f(A) < gr$
Do nu absählber viele solchen Baine existered, ist nun nuch die
hightwistad von g zu zeigen. (Bithe sollebsbandindig übelagen)
dnaleges Vongeken für $U_g \mod A_i(x) = (qr, n)$ nuclei $r < 4 < x \rightarrow f(A) > qr.$
 $\Rightarrow |U_g| = X_0.$

6) Den Lösungsmeg en Inehme man Eelix Hausdarff: Gesommelle Werke Brand I Grunderige der Mengenlehre, S. 382 f (Kazrikel IX, §3. Umstedige Eunkstionen) http://books.google.at/books?id=3nth_p-6DpcC